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Turbulent flow of an incompressible liquid in a tube is considered as flow of an oriented liquid whose sym-
metry is determined by the director. The velocity profile and the temperature field in steady-state flow in a
straight circular tube with a rough wall are determined within the framework of the model. The solutions
found coincide with analogous solutions for a smooth tube for roughness equal to zero.

Introduction. Turbulent liquid flows in smooth and rough tubes noticeably differ in properties. Therefore, one
usually considers them separately, thus emphasizing the significant character of differences. It is well known, e.g., that
a logarithmic velocity profile near a smooth wall does not immediately follow from the universal velocity profile near
a rough wall. However, it has turned out that one can consider both resistance and heat exchange in the case of flows
in smooth and rough tubes within the framework of a single model [1, 2], properly formulating boundary conditions.
Moreover, the corresponding solutions are also obtained for a smooth tube for zero roughness.

The present work seeks to prove this statement. The order of presentation is traditional: first the velocity pro-
file is sought and later the problem on heat exchange is solved. The solutions obtained are compared to experimental
results.

Velocity Profile. Within the framework of the model of [1, 2], we consider turbulent flow in a circular tube
of not very large radius (permissible tube radii are refined below) as the motion of a specific medium whose local pa-
rameters are the averaged velocity ui and the vector of local symmetry, i.e., the director ni. In the case of an incom-
pressible liquid the equations of motion of the medium in Cartesian coordinates xi have the form

ui,i = 0 , (1)

ρu
.
i = pij,j + ρfi , (2)

ρJn
..

i = βij,j + gi + ρGi . (3)

Here the points above symbols denote the substantial time derivatives; summation from 1 to 3 over double subscripts
is assumed.

The governing equations of the model are prescribed by the expressions [1, 2]

pij = − pδij + σij + τij , (4)

σij = Knα,i (nj,α − nα,j + njnβnα,β) , (5)

τij = µ1nαnβeαβninj + µ4eij , (6)

Journal of Engineering Physics and Thermophysics, Vol. 80, No. 5, 2007

Petrozavodsk State University, 39 Lenin Ave., Petrozavodsk, 185910, Russia; email: babkin@karelia.ru. Trans-
lated from Inzhenerno-Fizicheskii Zhurnal, Vol. 80, No. 5, pp. 89–96, September–October, 2007. Original article sub-
mitted February 27, 2006; revision submitted October 30, 2006.

1062-0125/07/8005-09392007 Springer Science+Business Media, Inc. 939



βij = κjni + K (ni,j − nj,i − njnαni,α) , (7)

gi = χni − (κβni),β + Knαnβ,αnβ,i , (8)

ni,j = 
∂ni

∂xj
 ,   eij = 

1

2
 




∂ui

∂xj
 + 

∂uj

∂xi




 .

Since the properties of the liquid near a solid wall are determined by the vortex structure of the flow, the coefficients
µ1, µ4, and K can be dependent on parameters globally characterizing flow, e.g., on the Reynolds number [2, 3]. The
equations presented suffice to determine the velocity profile at a constant liquid temperature. The heat-transfer equation
will be written below.

Let a viscous incompressible liquid (fluid) move in an infinite straight circular tube of radius R in the regime
of steady-state turbulent flow. The problem on determination of the velocity profile will be solved in cylindrical coor-
dinates r, ϕ, x with the x axis along the tube axis in the direction of flow. We assume that the coefficients µ1, µ4,
and K in the flow in question are constant. Disregarding the external mass forces fi and Gi in Eqs. (2) and (3), we
will seek the velocity um and the director nm in the form

ux = u (r) ,   ur = uϕ = 0 ,   nx = cos θ (r) ,   nr = sin θ (r) ,   nϕ = 0 . (9)

Substitution of expressions (9) into Eqs. (1)–(8) with allowance for the assumptions made leads to equations necessary
for solving the problem. The continuity equation (1) is satisfied identically. By virtue of arbitrariness of χ and κi in
formulas (7) and (8), we set them equal to zero. As a result, from Eqs. (3) we obtain, for θ, the equation

sin θ cos θ 



θ′′ + 

θ′
r



 − (2 − 3 cos

2
 θ) θ′2 = 0 . (10)

Equations (2) and (4)–(6) in combination with (9) yield

1

r
 
d (rτrr)

dr
 − 

∂p

∂r
 = 0 ,   

1

r
 
d (rτxr)

dr
 − 

∂p

∂x
 = 0 ; (11)

τrr = µ1 sin
3
 θ cos θu′ ,   τxr = τrx = 




µ1 sin

2
 θ cos

2
 θ + 

µ4

2




 u′ . (12)

It follows from the first equation of (11), with account for the first formula of (12), that the partial derivative ∂p ⁄ ∂r
is independent of the coordinate x; therefore, the pressure distribution over the cross section of the tube has the form

p (x, r) = p1 (x) + p2 (r) , (13)

and, as follows from the second equation of (11) and equality (13), we have ∂p ⁄ ∂r = const. After the integration of
the second equation of (11) and subsequent substitution of the second formula of (12) into it, we obtain an equation
for the profile of longitudinal velocities u:




µ1 sin

2
 θ cos

2
 θ + 

µ4

2




 u′ = − 

r

R
 τw . (14)

As far as the structure itself is considered, the model in question does not include the laminar and transition
layers of the generally accepted three-layer model [4, 5]; therefore, observing rigor, we should set boundary conditions
at the upper boundary of the transition layer. However, the comparison made to experimental data [2, 3, 6] and the
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comparison that will be made below show that in the case of a smooth wall we can set boundary conditions directly
on the tube wall. Boundary conditions for rough tubes will be formulated analogously.

Let ke be the equivalent roughness of the tube. We take that the roughness is reckoned from the cylindrical
surface r = R, i.e., the bases of the prominences of the equivalent granular roughness lie at distance R from the tube
axis. Just as in the semiempirical theory of flows in rough tubes [4, 5], we will assume that the longitudinal velocity
vanishes for r = R − (ke

 ⁄ 30). Furthermore, the angle θ is assumed to be equal to zero on this surface. Thus, boundary
conditions have the form

θr=R−(ke
 ⁄ 30) = 0 ,   uu=R−(ke

 ⁄ 30) = 0 . (15)

When ke = 0 conditions (15) become boundary conditions on a smooth wall [6].
The first integration of Eq. (10) yields

r sin θ cos
2
 θθ′ = − bR . (16)

The value of the constant of integration b can be determined by the condition at the boundary r = r0 to which the
wall vortex structure extends [2, 6]:

b = − (r0
 ⁄ R) sin θ0 cos

2
 θ0θ0′  . (17)

The angle θ grows with distance from the wall; therefore, in these coordinates, we have θ′ < 0 and consequently
b > 0.

Integrating Eq. (16) with the first boundary condition of (15), we obtain

cos
3
 θ = 1 + 3bR ln 

ξ
1 − ζe

 ,   ξ = 
r

R
 ,   ζe = 

ke

30R
 . (18)

The quantity ζe is small compared to unity and we can disregard it in formula (18). Near the tube wall, we replace
the function ln ξ by the first term of its expansion in the Taylor series, i.e., by the function (ξ − 1). As a result, we
have

cos θ = [1 − 3bR (1 − ξ)]1 ⁄ 3 . (19)

Integration of Eq. (14) with account for formula (19) and the second boundary condition of (15) yields the velocity
profile sought in the form

u = Au∗ [Φ (ξ) − Φ (ξe)] ,   Φ (ξ) = F (t (ξ)) ,   ξe = 1 − ζe , (20)

F (t) = 
3bR − 1

2γ2
 − 1

 



√γ2 − 1  arctan  

t

√γ2 − 1
 + 

γ
2

 ln 
γ − t

γ + t




 +

+ 
1 + 2ε

4 (2γ2
 − 1)

 ln 
γ2

 − t
2

t
2
 + γ2

 − 1
 + 

1

4
 ln t

4
 − t

2
 − ε + 

t
2

2
 , 

t = t (ξ) = [1 − 3bR (1 − ξ)]1 ⁄ 3 ,   2γ2
 = 1 + √1 + 4ε  ,

u∗ = 




τw

ρ





1 ⁄ 2

 ,   A = 
ρu∗

3µ1b
2
R

 ,   ε = 
µ4

2µ1
 .
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If the distance from the wall ζ = 1 − ξ is short, we can substantially simplify the solution (20). For this pur-
pose we will assume that the values of the model’s parameters µ1 and µ4 are the same for flows in smooth and rough
tubes. According to [2, 3, 6], the parameter γ is close to unity; therefore, we set γ = 1 in those terms of the solution
where this is mathematically acceptable and leave unchanged the remaining terms; thereafter we expand all the terms
in series in the parameter ζ, restricting ourselves to the first nonzero terms. As a result, we obtain the well-known
"logarithmic law of wall" in rough tubes [4, 5]

u

u∗
 = 

1

κ
 ln 

1 − ξ
ζe

 = 
1

κ
 



ln 

R − r

ke
 + ln 30




 ,   κ = 

2µ1b

ρu∗
 . (21)

The velocity profile in a smooth tube is obtained from (20) for ke = 0; near a solid wall, formula (21) yields,
instead of it, the "logarithmic law" of a smooth wall [4, 5]

u

u∗
 = 

1

κ
 ln 

(R − r) u∗
ν

 + C ,   C = 
1

κ
 ln 

νb

(γ − 1) u∗
 . (22)

Thus, the solution (20) is the velocity profile for both rough and smooth tubes. Figure 1 plots the velocity
profiles calculated from formula (20) (solid curves) and from the empirical formulas (21) and (22) (dashed curves) in
air flow in a tube of diameter d = 100 mm and Re = 200,000. The calculated values of the parameters in formula
(20) are ρ = 1.205 kg ⁄ m3, ν = 1.5⋅10−5 m2 ⁄ sec, b = 4.83 m−1, µ1 = 0.047u∗ Pa⋅sec, and µ4 = 1.85⋅10−6 Pa⋅sec. The
values of the parameters b, µ1, and µ4 are the same as those obtained in [2, 3, 6] by comparing to experimental data
in pressure and nonpressure air motions near a smooth wall. In the empirical universal formulas (21) and (22), we
have κ = 0.4 and C = 5.5.

The calculated curves (20) and the empirical curves (21) and (22) are, apparently, close everywhere except for
the region adjacent to the tube axis. As the roughness decreases, profiles 1–4 approach profile 5 in a smooth tube.

Heat Exchange. We find the steady-state temperature distribution in a semiinfinite tube x ≥ 0 with a constant
wall temperature in steady-state flow of a liquid with the velocity profile (20). In the adopted coordinate system r, ϕ,
x, the temperature T is sought in the form

T = T (r, x) . (23)

In determining the heat-flux density qm, we take into account that the moving medium has a local symmetry pre-
scribed by the director nm; therefore, with account for formula (23), the Fourier law is written as [7]

Fig. 1. Velocity profiles in rough tubes: 1) ke = R ⁄ 60; 2) R ⁄ 200; 3) R ⁄ 400;
4) R ⁄ 800; 5) smooth tube.
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qr = − (λ0 + λ1nr
2) 

∂T

∂r
 − λ1nrnx 

∂T

∂x
 ,

qϕ = − λ1nϕ 



nr 

∂T
∂r

 + nx 
∂T

∂x




 ,   qx = − λ1nxnr 

∂T

∂r
 − (λ0 + λ1nx

2) 
∂T

∂x
 .

(24)

When the flow regime is fixed, we will assume the coefficients λ0 and λ1 to be constant.
We replace the projections of nm by their expressions (9) by the angle θ. The equation of propagation of heat

is obtained by substitution of expressions (24) thus changed for qm into the general equation of propagation of heat
for a moving medium in cylindrical coordinates [8]

(λ0 + λ1 sin
2
 θ) ∂

2
T

∂r
2  + 








λ0 + λ1 sin
2
 θ

r
 + λ1 sin 2θθ′







 
∂T

∂r
 = ρcpu (r) 

∂T

∂x
 . (25)

In solving the problem, we will use the dimensionless variables

Θ = 
T − Tw

T0 − Tw
 ,   ξ = 

r

R
 ,   X = 

x

R
 . (26)

Substitution of the velocity profile (20) and the variables (26) into Eq. (25) reduces it to the calculated form

∂2Θ

∂ξ2  + Ψ1 (ξ) ∂Θ
∂ξ

 = Ψ2 (ξ) 
∂Θ

∂X
 ,

Ψ1 (ξ) = 
1

ξ
 − 

2λ1bR

t (ξ) [λ0 + λ1 (1 − t
2
 (ξ))]

 ,   Ψ2 (ξ) = 
ρcpu∗AR (Φ (ξ) − Φ (ξe))

λ0 + λ1 (1 − t
2
 (ξ))

 , (27)

where t(ξ) and Φ(ξ) are the functions determined in (20). Strictly speaking, the use of the profile (20) in Eq. (25) over
the entire cross section of the tube is not quite justified, since formula (20) holds only for the wall region. However,
judging from the plots in Fig. 1, we are not making a big mistake by acting in this manner.

In formulating the boundary conditions, we disregard the change in the temperature in the layer of thickness
ke

 ⁄ 30 and will assume that T = Tw on the cylinder surface r = ξeR. Suppose we have T0 = const at the inlet x = 0
of the computational domain. Then the boundary conditions for Eq. (27) will be written in the form

Θ (ξ, 0) = 1 ,   Θ (ξe, X) = 0 . (28)

To solve Eq. (27) we use the approximate Galerkin method [9], seeking the function Θ(ξ, X) in the form

Θ (ξ, X) = ∑ 

k=1

n

gk (X) ϕk (ξ) , (29)

and taking, as the basis functions ϕk(ξ) satisfying the second boundary condition (28), the functions

ϕk (ξ) = [Φ0 (ξ) − Φ0 (ξe)] cos ((k − 1) πξ) ,   k = 1, 2, ..., n ,

Φ0 (ξ) = 2 (3bR − 1) ln 
γ − t (ξ)

γ + t (ξ)
 + ln 

γ2
 − t

2
 (ξ)

t
2
 (ξ) + γ2

 − 1
 + ln t

4
 (ξ) − t

2
 (ξ) − ε + 2t

2
 (ξ) .

(30)

The functions gk(X) are sought from the system of differential equations
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dgi (X)
dX

 = ∑ 

j=1

n

bijgj (X) ,   i = 1, 2, ..., n , (31)

whose coefficients bij are the elements of the matrix B determined by the formulas

B = M
−1

L ,   L = (lij)1
n
 ,   M = (mij)1

n
 , (32)

lij = ∫ 
0

ξe

ϕi (ξ) ϕj′′ (ξ) + Ψ1 (ξ) ϕj′ (ξ) ξdξ ,   mij = ∫ 
0

ξe

ϕi (ξ) ϕj (ξ) Ψ2 (ξ) ξdξ .

Let βi be the eigenvalues of the matrix B, H = (hij)1
n be the matrix of normalized eigenvectors (columns) of

the matrix B, and S = (sij)1
n be the matrix with elements (the superscript n is equal to the number of terms in the sum

(29))

sij = ∫ 
0

ξe

ϕi (ξ) ϕj (ξ) ξdξ .

Then the solution of system (31) with the first boundary condition of (28) satisfied according to the Galerkin method
is represented in the form

gk (X) = ∑ 

i=1

n

Mihki exp (βiX) ,   Mi = ∑ 

j=1

n

dijlj ,   li = ∫ 
0

ξe

ϕi (ξ) ξdξ , (33)

where dij is the element of the matrix D = (SH)−1.
Formulas (29)–(30) with a prescribed n enable us to solve approximately the problem on temperature distribu-

tion in the flow. Based on the determination of the local Nusselt number Nu [8, 10], we can subsequently compute it
from the formula

Fig. 2. Limiting Nusselt number vs. Reynolds number in rough tubes for air: 1)
ke = R ⁄ 60; 2) R ⁄ 252; lines, calculations from formulas (29)–(34); points, Nun-
ner’s experimental results [11].
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Nu = − 
2λ0

λΘ
__  





∂Θ

∂ξ



ξe

 ,   Θ
__

 (X) = 
2

w
 ∫ 
0

ξe

Θ (ξ, X) u (ξ) ξdξ .
(34)

To compare to experimental results we realized the solution under specific conditions (liquid–air: ρ = 1.205
kg ⁄ m3, ν = 1.5⋅10−5 m2 ⁄ sec, λ = 2.57⋅10−2 W ⁄ (m⋅K), cp = 1002 J ⁄ (kg⋅K), and Pr = 0.72). The coefficients of the
model were the same as those in experiments with smooth tubes [3, 6]: µ1 = 0.047u∗ Pa⋅sec, µ4 = 1.85⋅10−6 Pa⋅sec,
λ0 = 0.28Ru∗ W ⁄ (m⋅K), and λ1 = 46.5u∗ W ⁄ (m⋅K). The calculations were carried out for n = 25.

As is seen from formula (19), for a fixed value of b in tubes whose diameter is larger than a certain b-de-
pendent value, the velocity profile (20) can fill the tube cross section only partially. Taking b = 4.83 m−1, we obtain
that the profile (20) fills the cross section in tubes of radius R ≤ 69 mm. The calculations show that for a fixed liquid,
the Nusselt number Nu at large X values is dependent just on the Reynolds number Re and the relative roughness
ke

 ⁄ R; therefore, the results given below hold for all tubes whose diameters lie in the above range.
Figure 2 give results of calculation of the limiting local Nusselt number Nu∞ from formulas (29)–(40) for X

= 200 and Nunner’s experimental results from [11]. Figure 3 compares the calculated Nu∞–Re curves to the plots of
empirical dependences for a smooth tube [10]

Nu∞ = 7.6 − 
3.6

log Re
 + 0.0096Re

0.87
Pr

0.605 (35)

and for a rough tube [12]

Nu∞ = Pr Re 
f
8

 






1 + 5.19k∗

0.2
Pr

0.44
 − 8.48 √ f

8
 







−1

 , (36)

Fig. 3. Limiting Nusselt number vs. Reynolds number in rough tubes for air:
1) ke = R ⁄ 200; 2) R ⁄ 800; 3) smooth tube; solid curves, calculation from for-
mulas (29)–(34); dashed curves: 1, 2, plots of the function (36), 3) of the
function (35).

Fig. 4. Change in the local Nusselt number on the initial thermal portion of
rough (1) and smooth (2) tubes as a function of x ⁄ d (d = 100 mm, Re =
200,000, and ke = R ⁄ 200).
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f = 



0.88ln 

R
ke

 + 1.74




−2

 ,   k∗ = 
keu∗
ν

 .

The calculated Nu – (x/d) curves on the initial thermal portion of rough and smooth tubes are presented in Fig. 4.
Conclusions. An analysis of the calculated results compared to experimental data enables us to draw a num-

ber of conclusions. In tubes with moderate and small roughnesses (ke
 ⁄ R ⁄ 200) up to Re = 600,000 the calculated Nu–

Re curves are in quite satisfactory qualitative and quantitative agreement with the experimental data. An increase in the
coefficient of heat transfer in rough tubes compared to smooth tubes for all Reynolds numbers is evident from Figs. 3
and 4. As the roughness decreases, the Nu–Re curves approach analogous dependences for smooth tubes. Calculations
for rough and smooth tubes have been carried out from the same equations and the same formulas and values of the
constants determining b, µ1, µ4, λ0, and λ1 and differing only in boundary conditions for Eqs. (14) and (27). There-
fore, we can state that the processes of heat exchange in tubes with a small roughness and in smooth tubes are close
in nature and are quite adequately described by this model. When the roughness is large (see Fig. 2), the disagreement
between the calculated and experimental data is significant. In such tubes, the mechanism of heat transfer near the
wall, apparently, becomes different and is not covered by this model.

NOTATION

A, coefficient of (20); a, thermal diffusivity, m2 ⁄ sec; B, matrix of (32) with elements bij; b, constant of inte-
gration (16), 1 ⁄ m; C, constant of the law of wall (22); cp, specific heat at constant pressure, J ⁄ (kg⋅K); D, matrix with
elements dij; d, tube diameter, m; eij, strain rates, 1 ⁄ sec; f, coefficient of resistance of a tube; fi, density of the mass
force, m ⁄ sec2; Gi, density of the external generalized mass force, m2 ⁄ sec2; gi, density of the internal generalized body
force, Pa; gk(X), functions (29); hij, elements of the matrix H; H, matrix of normalized eigenvectors of the matrix B;
J, density of the moment of inertia in rotation of the director, m2; K, coefficient of the model, kg⋅m ⁄ sec2; ke, equiva-
lent roughness, mm; k∗, constant of (36); L and M, matrices of (32); li and Mi, quantities of (33); Nu = αd ⁄ λ, Nusselt
number; Nu∞, limiting Nusselt number; n, number of the basis functions of (29); ni, director; Pr = ν ⁄ a, Prandtl num-
ber; p, pressure, Pa; pij, stresses, Pa; qm, heat-flux density, W ⁄ m2; R, tube radius, m; Re = wd ⁄ ν, Reynolds number;
r, distance from the tube axis, m; r0, distance from the tube axis to the boundary of the wall vortex layer, m; r, ϕ,
x, cylindrical coordinates; T, local temperature, K; T0, temperature at the boundary x = 0, K; Tw, temperature on the
tube wall, K; t, parameter in (20) and in what follows; u, longitudinal velocity in the tube, m ⁄ sec; ui, local velocity
in the flow, m ⁄ sec; u∗, dynamic velocity, m ⁄ sec; w, average velocity, m ⁄ sec; X, dimensionless longitudinal coordinate;
xi, Cartesian coordinates; α, heat-transfer coefficient, W ⁄ (m2⋅K); βi, eigenvalues of the matrix B; βij, generalized
stresses, Pa⋅m; γ, constant of (20); δij, Kronecker symbol; ε = µ4

 ⁄ (2µ1), ratio of the model’s coefficients; ζ = 1 − ξ,
dimensionless distance from the wall; ζe, dimensionless roughness of (18); Θ, dimensionless temperature of (26); Θ

__
,

dimensionless mass-mean temperature; θ, angle between the director and the x axis; θ0, value of the angle θ for r =
r0; κ, von Ka′rma′n constant; κi, arbitrary vector (7) and (8), Pa⋅m; λ, molecular thermal conductivity, W ⁄ (m⋅K); λ0
and λ1, anisotropic turbulent thermal conductivities, W ⁄ (m⋅K); µ1 and µ4, coefficients of anisotropic turbulent viscos-
ity, Pa⋅sec; ν, kinematic viscosity, m2 ⁄ sec; ξ, dimensionless coordinate of (18); ρ, density, kg ⁄ m3; σij and τij, stresses
of (4)–(6), Pa; τw, modulus of tangential stress on the wall, Pa; τrr and τxr, turbulent viscous stresses, Pa; ϕ, coordi-
nate in the cylindrical coordinate system; Φ(ξ), function of (20); Φ0(ξ), function of (30); χ, arbitrary scalar quantity
of (8). Subscripts and superscripts: i, j, k, n, α and β, natural numbers; m, coordinates r, ϕ, x; (′) and (′′), derivatives
with respect to r; w, wall; e, equivalent.
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